Hashing

CS 251 - Data Structures
and Algorithms




| Note:
Slides complement the
discussion in class

O

@) O



Hashing Table of Contents
Map any key to integers




Map any key to integers




Direct-Address Table

T[h(x.k)] = null

0

1 Search(T,k):

5 return T[h(k)]
K (actual keys) 3

4 Insert(T,x):

5 Tlh(x.k)] = x

6

7 Delete(T,x):

8

9

m

Each data point x has a key x. k and its respective item x. v



“to chop into small
pieces; make into
hash; mince.”

—Hash (verb) Definition

Image from: https://www.cutco.com/learn/how-to-mince-fresh-herbs/



https://www.cutco.com/learn/how-to-mince-fresh-herbs/

/@\@ Mapping Any Key to an Integer Key

Working with integer keys? Make them non-negative (in case they aren't).

Working with floating point keys? Use XOR of the two halves of the binary
representation (aka. folding).

Working with Strings? Use both integer representation of each character
and their respective locations(e.g., rolling hashing).

Working with compound keys? Mix them based on primitive data types.



Example: String hashCode()

hashCode

public int hashCode ()

Returns a hash code for this string. The hash code for a String object is computed as

s[0]1*31"*(n-1) + s[1]*31"(n-2) + ... + s[n-1]

using int arithmetic, where s [1i] is the ith character of the string, n is the length of the string, and ~ indicates exponentiation. (The hash value of the empty string is zero.)
Overrides:

hashCode in class Object
Returns:

a hash code value for this object.

See Also:

Object.equals(java.lang.Object), System.identityHashCode (java.lang.Object)

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()



https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()

Example: String hashCode()

public class Hashing

{
public static void main(String[] args)
{ H(“LIVE”) = 2337004
Str‘lng[] words = {"LIVE", "EVIL", "VILE", "LEVI", "VEIL"}; H(“EVIL») = 2140564
for (String w : words) H(“VILE”) = 2634604
{ H(“LEVI”) = 2333164
System.out.println("H(" + w + ") = " + w.hashCode()); H(“VEIL”) = 2630674
}

}
}




Polynomial Rolling Hash

m-1
H(S,a) = spa™ t +s;a™ 2 + - + 0 = qm-i-1
ya) = So 1a Cs—1A" = Sia

where a is a constant, S = 5457 ... S;—1 IS a string of length m.
Consider the string S = "abcd”, a = 26, and consecutive substrings of length 3:

H("abc",26) =1 x 26% + 2 x 261 + 3 x 26°
H("bcd",26) = 2 x 262 + 3 x 26 + 4 x 26°

H("bcd",26) = (H("abc",26) — H("a", 26) x 262) x 26 + H("d", 26)
= ((1x26%+2x26+3x26% — (1x26% x 262) x 26 + (4 x 26°)
=2X26%+3x26+4x26°

10



Rolling Hash Algorithm

algorithm H(S:string, a:Z)
let n be the length of S
sum < O
p<n-1
for i from @ to n - 1 do
sum < sum + intval(S[i]) * a”p
pep-1
end for
return sum
end algorithm

algorithm rollinghash(S:string, m:Z%, a:Z)
hashvalue « H(S[@, m - 1], a)
let n be the length of S
for i from 1 to n - m do
hashvalue = ((hashvalue - intval(S[i-1])*a”(m-1)) * a) - intval(S[i+m-1])
end for
end algorithm

Note: S[i] corresponds to the numerical value of the character at index i.

ll



h(last slide) = End

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

12


https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Hashing
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Hashing
	Slide 5: Direct-Address Table
	Slide 6: —Hash (verb) Definition
	Slide 7: Mapping Any Key to an Integer Key
	Slide 8: Example: String hashCode()
	Slide 9: Example: String hashCode()
	Slide 10: Polynomial Rolling Hash
	Slide 11: Rolling Hash Algorithm
	Slide 12: bold italic h open paren last , slide , close paren equals End

