
Hashing
CS 251 - Data Structures 

and Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
Map any key to integers
Hashing

01

3



Hashing
01

Map any key to integers

4



Direct-Address Table

𝑈 (universe of keys)

𝑥2 = 𝑘2, 𝑣2

-

-

𝑥5 = 𝑘5, 𝑣5

-

𝑥7 = 𝑘7, 𝑣7
-

-

-

𝑥1 = 𝑘1, 𝑣1

𝑇

2

3

4

5

6

7

8

9

0

1

𝐾 (actual keys)

𝑘0 ∙

𝑘1 ∙

𝑘2 ∙

𝑘3 ∙

𝑘4 ∙

𝑘5 ∙

𝑘6 ∙ 𝑘7 ∙

𝑘8 ∙

𝑘9 ∙

Search(𝑇, 𝑘):
return 𝑇[ℎ 𝑘 ]

Insert(𝑇, 𝑥):
𝑇 ℎ 𝑥. 𝑘 = 𝑥

Delete(𝑇, 𝑥):
𝑇 ℎ 𝑥. 𝑘 = null

𝑚 = 𝑈

5Each data point 𝑥 has a key 𝑥. 𝑘 and its respective item 𝑥. 𝑣



—Hash (verb) Definition

“to chop into small 
pieces; make into 
hash; mince.”

Image from: https://www.cutco.com/learn/how-to-mince-fresh-herbs/
6

https://www.cutco.com/learn/how-to-mince-fresh-herbs/


Mapping Any Key to an Integer Key

Working with integer keys? Make them non-negative (in case they aren’t).

Working with floating point keys? Use XOR of the two halves of the binary 
representation (aka. folding).

Working with Strings? Use both integer representation of each character 
and their respective locations (e.g., rolling hashing).

Working with compound keys? Mix them based on primitive data types.

7



https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()

Example: String hashCode()

8

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()


Example: String hashCode()

public class Hashing 
{

public static void main(String[] args) 
{

String[] words = {"LIVE", "EVIL", "VILE", "LEVI", "VEIL"};

for (String w : words) 
{

System.out.println("H(" + w + ") = " + w.hashCode());
}

}
}

H(“LIVE”) = 2337004
H(“EVIL”) = 2140564
H(“VILE”) = 2634604
H(“LEVI”) = 2333164
H(“VEIL”) = 2630674

9



Polynomial Rolling Hash

𝐻 𝑆, 𝑎 = 𝑠0𝑎
𝑚−1 + 𝑠1𝑎

𝑚−2 +⋯+ 𝑐𝑠−1𝑎
0 = ෍

𝑖=0

𝑚−1

𝑠𝑖𝑎
𝑚−𝑖−1

where 𝑎 is a constant, 𝑆 = 𝑠0𝑠1…𝑠𝑚−1 is a string of length 𝑚.

Consider the string 𝑆 = "abcd“, 𝑎 = 26, and consecutive substrings of length 3:

𝐻 "abc", 26 = 1 × 262 + 2 × 261 + 3 × 260

𝐻 "bcd", 26 = 2 × 262 + 3 × 261 + 4 × 260

𝐻 "bcd", 26 = 𝐻 "abc", 26 − 𝐻 "a", 26 × 262 × 26 + 𝐻 "d", 26

= 1 × 262 + 2 × 261 + 3 × 260 − 1 × 260 × 262 × 26 + 4 × 260

= 2 × 262 + 3 × 261 + 4 × 260

10



Rolling Hash Algorithm

algorithm H(S:string, a:ℤ)
let n be the length of S
sum ← 0
p ← n – 1
for i from 0 to n - 1 do

sum ← sum + intval(S[i]) * a^p
p ← p - 1

end for
return sum

end algorithm

11

algorithm rollinghash(S:string, m:ℤ+, a:ℤ)
hashvalue ← H(S[0, m - 1], a)
let n be the length of S
for i from 1 to n - m do

hashvalue = ((hashvalue – intval(S[i-1])*a^(m-1)) * a) – intval(S[i+m-1])
end for

end algorithm

Note: S[i] corresponds to the numerical value of the character at index i.



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

𝒉 last slide = End

Do you have any questions?

12

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Hashing
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Hashing
	Slide 5: Direct-Address Table
	Slide 6: —Hash (verb) Definition
	Slide 7: Mapping Any Key to an Integer Key
	Slide 8: Example: String hashCode()
	Slide 9: Example: String hashCode()
	Slide 10: Polynomial Rolling Hash
	Slide 11: Rolling Hash Algorithm
	Slide 12: bold italic h open paren last , slide , close paren equals End

