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Direct-Address Table

𝑈 (universe of keys)

𝑥2 = 𝑘2, 𝑣2

-

-

𝑥5 = 𝑘5, 𝑣5

-

𝑥7 = 𝑘7, 𝑣7
-

-

-

𝑥1 = 𝑘1, 𝑣1

𝑇

2

3

4

5

6

7

8

9

0

1

𝐾 (actual keys)

𝑘0 ∙

𝑘1 ∙

𝑘2 ∙

𝑘3 ∙

𝑘4 ∙

𝑘5 ∙

𝑘6 ∙ 𝑘7 ∙

𝑘8 ∙

𝑘9 ∙

Search(𝑇, 𝑘):
return 𝑇[ℎ 𝑘 ]

Insert(𝑇, 𝑥):
𝑇 ℎ 𝑥. 𝑘 = 𝑥

Delete(𝑇, 𝑥):
𝑇 ℎ 𝑥. 𝑘 = null

𝑚 = 𝑈

5Each data point 𝑥 has a key 𝑥. 𝑘 and its respective item 𝑥. 𝑣



—Hash (verb) Definition

“to chop into small 
pieces; make into 
hash; mince.”

Image from: https://www.cutco.com/learn/how-to-mince-fresh-herbs/
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https://www.cutco.com/learn/how-to-mince-fresh-herbs/


Mapping Any Key to an Integer Key

Working with integer keys? Make them non-negative (in case they aren’t).

Working with floating point keys? Use XOR of the two halves of the binary 
representation (aka. folding).

Working with Strings? Use both integer representation of each character 
and their respective locations (e.g., rolling hashing).

Working with compound keys? Mix them based on primitive data types.
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https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()

Example: String hashCode()
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Example: String hashCode()

public class Hashing 
{

public static void main(String[] args) 
{

String[] words = {"LIVE", "EVIL", "VILE", "LEVI", "VEIL"};

for (String w : words) 
{

System.out.println("H(" + w + ") = " + w.hashCode());
}

}
}

H(“LIVE”) = 2337004
H(“EVIL”) = 2140564
H(“VILE”) = 2634604
H(“LEVI”) = 2333164
H(“VEIL”) = 2630674
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Polynomial Rolling Hash

𝐻 𝑆, 𝑎 = 𝑠0𝑎
𝑚−1 + 𝑠1𝑎

𝑚−2 +⋯+ 𝑐𝑠−1𝑎
0 = ෍

𝑖=0

𝑚−1

𝑠𝑖𝑎
𝑚−𝑖−1

where 𝑎 is a constant, 𝑆 = 𝑠0𝑠1…𝑠𝑚−1 is a string of length 𝑚.

Consider the string 𝑆 = "abcd“, 𝑎 = 26, and consecutive substrings of length 3:

𝐻 "abc", 26 = 1 × 262 + 2 × 261 + 3 × 260

𝐻 "bcd", 26 = 2 × 262 + 3 × 261 + 4 × 260

𝐻 "bcd", 26 = 𝐻 "abc", 26 − 𝐻 "a", 26 × 262 × 26 + 𝐻 "d", 26

= 1 × 262 + 2 × 261 + 3 × 260 − 1 × 260 × 262 × 26 + 4 × 260

= 2 × 262 + 3 × 261 + 4 × 260
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Rolling Hash Algorithm

algorithm H(S:string, a:ℤ)
let n be the length of S
sum ← 0
p ← n – 1
for i from 0 to n - 1 do

sum ← sum + intval(S[i]) * a^p
p ← p - 1

end for
return sum

end algorithm
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algorithm rollinghash(S:string, m:ℤ+, a:ℤ)
hashvalue ← H(S[0, m - 1], a)
let n be the length of S
for i from 1 to n - m do

hashvalue = ((hashvalue – intval(S[i-1])*a^(m-1)) * a) – intval(S[i+m-1])
end for

end algorithm

Note: S[i] corresponds to the numerical value of the character at index i.



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

𝒉 last slide = End

Do you have any questions?
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